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Abstract

The superposition method is introduced as a means for obtaining analytical-type solutions for free in-
plane vibration of rectangular plates. The governing differential equations and boundary conditions are
expressed in dimensionless form. The problem of free in-plane vibration of the completely free rectangular
plate is resolved for illustrative purposes. Convergence is found to be rapid and excellent agreement
between computed results and those obtained by previous authors utilizing the Rayleigh–Ritz energy
method is obtained. It is pointed out that following procedures analogous to those utilized in resolving
lateral plate vibration problems, in-plane free vibration problems related to point supported plates, plates
with in-plane elastic boundary support, etc., are now amenable to solution by this method.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A vast array of technical papers related to the free lateral vibration of rectangular plates has
been available in the literature for a number of years. Each year further technical papers related to
this subject matter appear in the technical journals.

The situation with regard to free in-plane vibration of these plates is quite different. Here, it is
recognized that the results of only a minuscule number of studies have been published. A number
of these are to be found listed in Ref. [1]. It is generally agreed that this discrepancy is due to the
fact that natural frequencies of plates in lateral vibration are invariably much lower than those of
plates in in-plane vibration. The lateral vibration modes are therefore much more likely to be
excited by the time-varying forces normally available to provide this excitation.
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In more recent studies, particularly those related to ship hull design, it is found that a strong
relationship between plate in-plane vibration and high-frequency noise can exist. This has led to a
renewed interest in the phenomenon of rectangular plate in-plane vibration. It should also be
pointed out that plates subjected to fluid turbulent boundary layers can, in fact, be excited in both
in-plane and transverse vibration modes. It is found, furthermore, that due to the nature of the
in-plane problem and its elevated natural frequencies, the analysis of such problems by the finite
element method becomes difficult.

For these reasons it has been decided to explore the applicability of the superposition method as
a means for analyzing rectangular plate in-plane free vibration problems. This method, which has
found such wide application in analysis of plate lateral free vibration, is introduced here as a
powerful means of obtaining analytical-type solutions for the in-plane problem. Among its
advantages are the fact that no mode shapes need be selected, as is the case for the Rayleigh–Ritz
energy approach. The governing differential equations are satisfied exactly throughout the
domain of the plate. Boundary conditions are satisfied to any desired degree of accuracy.

For development of the analytical technique, and illustration of its capabilities, attention is
focused on the classical problem of free in-plane vibration of the completely free rectangular plate.
Exact solutions are known to exist for plates with what are defined as simply supported edge
conditions.

It will become apparent to the reader that, in fact, this self-contained method not only works
extremely well for the completely free plate problem but it is ideally suited for handling plates with
various combinations of boundary conditions, fixed point supports, etc. Computed results will be
compared with those of Badell et al. [1]. They have examined the in-plane free vibration of plates
with classical edge conditions by means of the Rayleigh–Ritz approach. They have employed what
are described as ‘an ascending hierarchy of K-orthogonal polynomials in conjunction with
Hermite cubics’ to represent plate in-plane displacement.

Kobayshi et al. [2] have examined the problem of in-plane vibration of rectangular plates with
point supports. Plate deflections were expressed in series utilizing the product of power functions
and the Ritz method was employed to obtain a solution. Gutierrez and Laura [3] examined in-
plane free vibration of rectangular plates with in-plane elastic support at the boundaries. They
used an extension of the method employed by Mikhlin to obtain the lowest frequency of
completely free plate vibration. What is described as ‘an approximate solution’ was obtained by
the Ritz approach.

It may be appropriate to repeat here that, in what is to follow, the challenge of trying to select
appropriate functions to represent plate displacements is completely eliminated.

2. Mathematical procedure

Utilizing conventional notation the well-known dynamic equilibrium equations governing the
in-plane vibration of a rectangular plate are written as

@sx

@x
þ

@txy

@y
¼ r

@2u

@t2
ð1Þ
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and

@txy

@x
þ

@sy

@y
¼ r

@2v

@t2
; ð2Þ

where r is the density of the plate material, u; and v; represent motion in the x and y directions,
respectively, and t represents time.

The stresses are written as

sx ¼ A11
@u

@x
þ A12

@v

@y
; sy ¼ A12

@u

@x
þ A22

@v

@y
; txy ¼ A66

@v

@x
þ

@u

@y

� �
;

where A11 ¼ A22 ¼ E=ð1 � n2Þ; A12 ¼ nE=ð1 � n2Þ; and A66 ¼ Gxy:
Here n and E are the material Poisson ratio, and Young’s modulus, respectively, and Gxy is the

modulus of elasticity is shear.
Utilizing the above stress–displacement relationships and substituting in the equilibrium

equations (1) and (2) we obtain

A11
@2u

@x2
þ A12

@2v

@x@y
þ A66

@2v

@x@y
þ

@2u

@y2

� �
¼ r

@2u

@t2
ð3Þ

and

A66
@2v

@x2
þ

@2u

@x@y

� �
þ A12

@2u

@x@y
þ A22

@2v

@y2
¼ r

@2v

@t2
; ð4Þ

This is an alternative form of the equilibrium equations and the one that will be utilized here.
Consider a plate with edge length ‘a’ running in the x direction and edge length ‘b’ running in

the y direction (see Fig. 1). In order to develop the equilibrium equations in dimensionless form
we will divide the plate in-plane displacements u; and v; by edge length ‘a’, and denote the
dimensionless displacements by the symbols U and V ; respectively (Fig. 1) . We also introduce the
dimensionless co-ordinates x ¼ x=a; and Z ¼ y=b: The variables U and V represent amplitude of
harmonic motions of circular frequency o: Substituting the above dimensionless quantities in
Eqs. (3) and (4) it is then readily shown that these equations may be expressed in dimensionless
form as

a11
@2U

@x2
þ

a12

f
@2V

@x@Z
þ

a66

f
@2V

@x@Z
þ

1

f
@2U

@Z2

� �
þ l4U ¼ 0 ð5Þ
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Fig. 1. Schematic representation of completely free rectangular plate to be analyzed.
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and

a66
@2V

@x2
þ

1

f
@2U

@x@Z

� �
þ

a12

f
@2U

@Z@x
þ

a11

f2

@2V

@Z2
þ l4V ¼ 0; ð6Þ

where j equals the plate aspect ratio, b=a; and the dimensionless frequency is l2 where l2 ¼
oaOrð1� n2Þ=E: The quantities a11 ¼ 1; a12 ¼ v; and a66 ¼ ð1 � nÞ=2:

The dimensionless equilibrium equations (5) and (6) are utilized in all work reported here.
It is appropriate at this time to introduce dimensionless stresses, sn

y; sn
x; and tnxy: Beginning with

expressions provided for stresses earlier we have

sy ¼
nE

1 � n2
@u

@x
þ

E

1� n2
@v

@y
or

syð1 � n2Þ
E

¼ n
@u

@x
þ

@v

@y

and

sn

y ¼
syð1� n2Þ

E
or sn

y ¼ n
@U

@x
þ

1

f
@V

@Z
: ð7Þ

Similarly, we obtain

sn

x ¼
sxð1 � n2Þ

E
or sn

x ¼
@U

@x
þ

n
f
@V

@Z
: ð8Þ

Rearranging the expression provided for txy we have

txy

A66
¼

@V

@x
þ

1

f
@U

@Z
:

Then we set

tnxy ¼
txyf
A66

or tnxy ¼
@U

@Z
þ f

@V

@x
: ð9Þ

We are now in a position to begin the in-plane vibration analysis of rectangular plates. We wish
at this time to focus attention on the completely free plate. Such a plate is depicted in Fig. 2 where
the reference axes coincide with the plate central axes. In fact, it will become apparent that we
need only focus attention on the quarter plate bounded by the x- and Z-axis. For our plate
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Fig. 2. The completely free plate with central co-ordinate axes.
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dimensions a; and b; referred to earlier, we will utilize the dimensions of the quarter plate as
indicated in the figure.

It will be appreciated that a certain amount of symmetry, or anti-symmetry, of plate in-plane
displacements about the plate central axes is to be expected for each plate free vibration mode
shape. We choose to define a free vibration mode as being symmetric about an axis if
displacement normal to this axis has a symmetric distribution about it.

Referring to the x-axis of the quarter plate it is to be anticipated that for any free vibration
mode, displacement normal to this axis, i.e., displacement V ; will either be symmetrically, or anti-
symmetrically, distributed about this axis. In the case of a symmetric distribution we will have,
@V=@Z ¼ 0; along the x-axis. Conversely, if we have an anti-symmetric distribution we will have,
V ¼ 0; along the same axis.

It will be appreciated that completely analogous constraints on the displacement U can be
written with regard to the Z-axis.

For the completely free plate we need only analyze the quarter plate of Fig. 2, provided all
possible modes are analyzed. We define those mode families as follows:

Symmetric–symmetric modes: Displacement normal to each axis of the quarter plate will be
symmetrically distributed with respect to these axes.

Anti-symmetric–anti-symmetric modes: Displacement normal to each of the above axes will be
anti-symmetrically distributed with respect to these axes.

Symmetric–anti-symmetric modes: Displacement normal to the x-axis will be symmetrically
distributed with respect to this axis while displacement normal to the Z-axis will be anti-
symmetrically distributed with respect to this axis.

In the work to follow each of the above families of modes will be analyzed separately and will
be referred to utilizing the designations introduced above. In this way all of the in-plane vibration
modes of the completely free plate will be established. Furthermore, the three characteristic mode
families will be clearly separated out. This constitutes a continuation of a similar approach which
was introduced for the lateral free vibration analysis of the completely free plate [4].

We are now in a position to begin analysis of the three in-plane free vibration mode families
discussed above.

2.1. The symmetric–symmetric mode family

Consider the quarter plate as shown on the left hand side of Fig. 3. Pairs of small circles
adjacent to the edges, x ¼ 0; and Z ¼ 0; indicate that conditions of symmetry, as discussed above,
are to be satisfied along these edges. The other edges of the quarter plate are free of surface
tractions.

In the procedure to follow it will be shown how a solution for the free in-plane vibration modes
and frequencies of the quarter plate is obtained by first superimposing the two edge driven
in-plane forced vibration problems (building blocks) shown schematically to the right of the
figure. In a manner completely analogous to that followed in the analysis of lateral free vibration
of the same plate, free vibration eigenvalues are obtained by constraining Fourier driving
coefficients appearing in the distributed edge-driving forces. These coefficients are constrained so
as to insure that boundary conditions required of the superimposed set are satisfied.
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Consider now the first building block on the right hand side of the figure. Conditions of zero
in-plane shear stress are to be enforced along the edges, x ¼ 1; and Z ¼ 1: A distributed harmonic
driving force is to be imposed along the edge, Z ¼ 1:

We take the solution for the amplitude of harmonic displacements of this building block as
follows:

Uðx; ZÞ ¼
XN

m¼1;2

UmðZÞcosð2m � 1Þ
px
2

ð10Þ

and

V ðx; ZÞ ¼
XN
m¼1

VmðZÞsinð2m � 1Þ
px
2
: ð11Þ

This is a Levy-type solution. The prescribed boundary conditions are satisfied along edges at
the extremities of the Fourier trigonometric functions, as required of all Levy-type solutions. It
will be noted that since the quantity Uðx; ZÞ equals zero along the edge, x ¼ 1; the quantity
@Uðx; ZÞ=@Z will also equal zero, as does the quantity @V ðx; ZÞ=@x: Shear forces along this edge are
therefore zero (Eq. (9)).

Substituting Eqs. (10) and (11) into the equilibrium equations (5) and (6), it is readily shown
that we obtain

am1U 00
mðZÞ þ bm1V 0

mðZÞ þ Cm1UmðZÞ ¼ 0 ð12Þ

and

am2V 00
mðZÞ þ bm2U 0

mðZÞ þ cm2VmðZÞ ¼ 0; ð13Þ

where superscripts imply differentiation with respect to the variable Z and

am1 ¼
a66

f2
; bm1 ¼

emp

f
ða12 þ a66Þ; cm1 ¼ �a11emps þ l4; am2 ¼

a11

f2
;

bm2 ¼
�emp

f
ða66 þ a12Þ; Cm2 ¼ �a66emps þ l4:

Here, in the interest of brevity, symbols ‘emp’ and ‘emps’ are introduced to represent quantities
ð2m � 1Þp=2; and fð2m � 1Þp=2g2; respectively.
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Fig. 3. Schematic representation of quarter plate under study and building blocks utilized in symmetric–symmetric

mode analysis. Adjacent short arrows indicate amplitude of distributed in-plane forces acting on driven edges.
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The quantities U j
mðZÞ; and U jjjj

m ðZÞ; may be expressed in terms of the parameter VmðZÞ and its
derivatives, by means of Eq. (13). Turning to Eq. (12), differentiating it once with respect to Z; and
then replacing the quantities U j

mðZÞ and U jjjj
m ðZÞ with the above expressions, we obtain the following

fourth order homogeneous differential equation involving the quantity VmðZÞ only:

Viv
m ðZÞ þ bV 00

mðZÞ þ cVmðZÞ ¼ 0; ð14Þ

where

b ¼ ðam1cm2 � bm1bm2 þ cm1am2Þ=am1am2

and

c ¼ cm1cm2=am1am2:

Focusing on the differential equation (14) and denoting the square of the roots of the
characteristic equation associated with it as e2; we may write

ðe2Þ2 þ be2 þ c ¼ 0: ð15Þ

The roots for e2; denoted as e21 and e22; become

e21 ¼
�b þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4c

p
2

; e22 ¼
�b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4c

p
2

:

It is found in all the work reported here that the quantity b2 � 4c is positive. This means that the
quantities e21 and e22 are real, though they may be positive or negative. We denote these quantities
as Root1; and Root2; respectively. We also introduce the quantities bm ¼ OjRoot1j and gm ¼
OjRoot2j: Three forms of solution for Eq. (14) are therefore possible, as follows:

Solution 1: Root1X0; Root2p0; then

VmðZÞ ¼ Am sinh bmZþ Bm cosh bmðZÞ þ Cm sin gmðZÞ þ Dm cos gmZ; ð16Þ

where Am;Bm; etc., are constants to be determined.
Solution 2: Root1p0; Root2p0

VmðZÞ ¼ Am sin bmZþ Bm cos bmðZÞ þ Cm sin gmZþ Dm cos gmZ: ð17Þ

Solution 3: Root1X0; Root2X0

VmðZÞ ¼ Am sinh bmZþ Bm cosh bmZþ Cm sinh gmZþ Dm cosh gmZ: ð18Þ

We return now to obtaining the forced vibration response of the first building block of Fig. 3.
We will provide expressions for the response associated with each of the above solution forms
separately.

Case 1: Solution 1 applicable. In view of the symmetry in the distribution of the displacement
V ðx; ZÞ with respect to the x axis, we write

VmðZÞ ¼ Bm cosh bmZþ Dm cos gmZ: ð19Þ

It will be noted that terms in the quantity VmðZÞ; anti-symmetric with respect to the x-axis, have
been deleted.

We next focus on the quantity UmðZÞ: Utilizing Eq. (12) we can express UmðZÞ in terms of U jj
mðZÞ

and V j
mðZÞ: But Eq. (13) permits us to express U jj

mðZÞ in terms of V jjjj
m ðZÞ and V j

mðZÞ: Combining
these two relationships we are able to express the quantity UmðZÞ in terms of the derivatives of the
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quantity VmðZÞ: Utilizing Eq. (19) we then obtain

UmðZÞ ¼ Bma2m sinh bmZþ Dma4m sin gmZ; ð20Þ

where

a2m ¼ bmfam1am2b
2
m þ am1cm2 � bm1bm2g=cm1bm2

and

a4m ¼ gmfam1am2g2m � am1cm2 þ bm1bm2g=cm1cm2:

Note that the quantity UmðZÞ will have a distribution which is anti-symmetric with respect to the
x-axis.

It will be recalled that the driven edge of the building block is free of in-plane shear stress. We
therefore enforce the edge condition (Eq. (9))

@UmðZÞ
@Z

þ f
@VmðZÞ
@x

����
Z¼1

¼ 0: ð21Þ

Enforcing this boundary condition to evaluate the coefficient Dm we obtain

VmðZÞ ¼ Bmfcosh bmZþ y1m cos gmZg ð22Þ

and

UmðZÞ ¼ Bmfa2m sinh bmZþ y1ma4m sin gmZg; ð23Þ

where

y1m ¼
�fa2mbm þ f empg cosh bm

fa4mgm þ f empg cos gm

:

Finally, we must enforce the condition of dynamic equilibrium along the edge, Z ¼ 1; where the
distributed in-plane harmonic driving force is imposed.

Let the spatial distribution of the amplitude of the imposed normal stress be represented in
series form as

sn

y ¼
XN

m¼1;2

Em sin emp x: ð24Þ

Substituting Eqs. (22) and (23) into Eq. (7), and utilizing the equality expressed by Eq. (24), the
unknown coefficient Bm is readily expressed in terms of the driving coefficient, Em; for any value
of m:

This permits us to write the quantities VmðZÞ; and UmðZÞ as

VmðZÞ ¼ Emy11mfcosh bmZþ y1m cos gmgg ð25Þ

and

UmðZÞ ¼ Emy11mfa2m sinh bmZþ y1ma4m sin gmZg; ð26Þ

where

y11m ¼
1

f½bm=f� n emp a2m�sinh bm � y1m½gm=fþ n emp a4m�sin gmg
:
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Referring to Eqs. (10) and (11), it is seen that we now have available the building block response
to any harmonic normal stress imposed along its driven edge, provided Solution 1 is applicable. It
will be appreciated that an identical procedure will be followed in order to obtain expressions for
the response when either of the other two solution forms are applicable. There is no need to give a
detailed description of these procedures here. Only the expressions required to describe the
building block response associated with each of these two solution forms will be provided. Only
the quantities UmðZÞ and VmðZÞ of Eqs. (10) and (11) will be different.

Case 2: Solution 2 applicable

VmðZÞ ¼ Emy11mfcos bmZþ y1m cos gmZg ð27Þ

and

UmðZÞ ¼ Emy11mfa2m sin bmZþ y1ma4m sin gmZg; ð28Þ

where

y11m ¼
�1

f½bm=fþ n emp a2m�sin bm þ y1m½gm=fþ n emp a4m�sin gmg
;

y1m ¼
�ða2mbm þ f empÞcos bm

ða4mgm þ f empÞcos gm

;

a2m ¼ bmfam1am2b
2
m � am1cm2 þ bm1bm2g=cm1bm2;

a4m ¼ gmfam1am2g2m � am1cm2 þ bm1bm2g=cm1bm2:

Case 3: Solution 3 applicable

VmðZÞ ¼ Emy11mfcosh bmZþ y1m cosh gmZg ð29Þ

and

UmðZÞ ¼ Emy11mfa2m sinh bmðZÞ þ y1ma4m sinh gmZg; ð30Þ

where

y11m ¼
1:

f½bm=f� n emp a2m�sinh bm þ y1m½gm=f� n emp a4m�sinh gmg
;

y1m ¼
�½a2mbm þ f emp�cosh bm

½a4mgm þ f emp�cosh gm

;

a2m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=cm1bm2;

a4m ¼ gm½am1am2g2m þ am1cm2 � bm1bm2�=cm1bm2:

The entire solution is therefore available for the response of the first building block of Fig. 3.
We turn next to obtaining the solution of the second building block. It differs from the first only

in that it is driven along the edge, x ¼ 1; and a condition of zero shear stress is imposed along the
edge, Z ¼ 1: It will be apparent that the solution for the response of this second building block is
readily extracted from that of the first. In order to avoid confusion the symbol ‘n’ rather than ‘m’
is now utilized in designating the terms in the series summations.
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We still wish to use the symbols U and V to indicate displacement parallel to the x- and Z-axis,
respectively. After interchange of the variables x and Z; we write for the response of this building
block (see Eqs. (10) and (11))

Uðx; ZÞ ¼
XN
n¼1;2

UnðxÞsinð2n � 1Þ
pZ
2

ð31Þ

and

V ðx; ZÞ ¼
XN
n¼1;2

VnðxÞcosð2n � 1Þ
pZ
2
: ð32Þ

Before extracting solutions for UnðxÞ and VnðxÞ from the earlier solutions it will be apparent to
the reader that we must proceed as follows:

1. Replace temporarily the earlier quantity l2 by l2 ðb=aÞ:
2. Replace the earlier symbols am1; am2; etc., appearing after Eqs. (12) and (13) with corresponding

symbols an1; an2; etc., and the symbols emp and emps by enp and enps where enp ¼ ð2n � 1Þp=2
and enps ¼ enp2:

3. Replace the plate aspect ratio by its inverse.

In the case of Solution 1 we obtain, for example (see Eqs. (25) and (26)),

UnðxÞ ¼ Eny11nfcosh bnxþ y1n cos gnxg ð33Þ

and

VnðxÞ ¼ Eny11nfa2n sinh bnxþ y1na4n sin gnxg: ð34Þ

The reader will have no trouble, therefore, extracting appropriate expressions for the second
building block response, from those of the first, for all three types of solution possible here:

Before moving on to set up the eigenvalue matrix for the symmetric–symmetric family of modes
it is preferable to first obtain solutions for the response of the building blocks utilized in analyzing
the other two mode families.

2.2. The anti-symmetric–anti-symmetric mode family

Free vibration analysis for this mode family, discussed earlier, is achieved by means of the
building blocks represented in Fig. 4. The quarter plate of interest is shown to the left of the figure.
It will be recalled that the plate displacement normal to the x- and Z-axis now has an anti-
symmetric distribution with respect to these axes.

Edges x ¼ 1; and Z ¼ 1; of the first building block are again free of shear stress and the edge
Z ¼ 1; is driven by a distributed imposed harmonic normal stress.

A Levy-type solution for the first building block can be written as

Uðx; ZÞ ¼
XN

m¼1;2

UmðZÞsinðm � 1Þpx ð35Þ
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and

V ðx; ZÞ ¼
XN

m¼1;2

VmðZÞcosðm � 1Þpx: ð36Þ

Substituting in the governing differential equations, in a manner identical to that followed in
analysis of the symmetric–symmetric modes, we again arrive at the equilibrium equations (12) and
(13) where now

am1 ¼
a66

f2
; bm1 ¼

�empða66 þ a12Þ
f

; cm1 ¼ l4 � a11 emps;

am2 ¼
a11

f2
; bm2 ¼

empða12 þ a66Þ
f

; cm2 ¼ l4 � a66 emps;

where emp ¼ ðm � 1Þp; and emps ¼ emp2:
Again, the quantity VmðZÞ is governed by Eq. (14) and the three possible solution forms for

VmðZÞ are as given by Eqs. (16)–(18). The principal difference here relates to the solution term
when subscript m equals 1, i.e., emp, bm1; and bm2 equal zero. There is then no contribution to the
quantity UmðZÞ (Eq. (35)). From Eq. (13) we obtain

V jj
mðZÞ þ a2VmðZÞ ¼ 0; ð37Þ

where

a2 ¼
l4f2

a11
:

The solution for Eq. (37) is well known and, since VmðZÞ is anti-symmetric about the x-axis, we
have

VmðZÞ ¼ A0 sin aZ: ð38Þ

The amplitude of the dimensionless harmonic driving stress along the edge Z ¼ 1 is expressed in
series form as

sn

yðxÞ ¼
XN

m¼1;2

Em cosðm � 1Þpx: ð39Þ
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Fig. 4. Schematic representation of quarter plate and building blocks utilized in anti-symmetric–anti-symmetric mode

analysis.
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Taking the solution for VmðZÞ (Eq. (38)) and enforcing Eq. (39), ðm ¼ 1Þ; we obtain,

VmðZÞ ¼ Em

f
a cos a

sin aZ: ð40Þ

The response of the building block to the first driving term is thus completely established.
Turning now to the building block response to driving terms with m > 1; it is seen that we must

proceed in a manner identical to that described for the symmetric–symmetric modes. The only
difference is that now, for each of the three solution forms, terms related to displacement V and
symmetric about the x-axis must be deleted. Only the results thereby obtained are presented here.

Case 1: Solution 1 applicable

VmðZÞ ¼ Emy11mfsinh bmZþ y1m sin gmZg; ð41Þ

UmðZÞ ¼ Emy11mfa1m cosh bmZþ y1ma3m cos gmZg; ð42Þ

where

y11m ¼
1:

½bm=fþ n emp a1m�cosh bm þ y1m½gm=fþ n emp a3m�cos gm

;

y1m ¼
½bma1m � f emp�sinh bm

½gma3m þ f emp�sin gm

;

a1m ¼ bmðam1am2b
2
m þ am1cm2 � bm1bm2Þ=cm1bm2;

a3m ¼ �gmðam1am2g2m � am1cm2 þ bm1bm2Þ=cm1bm2;

Case 2: Solution 2 applicable

VmðZÞ ¼ Emy11mfsin bmZþ y1m sin gmZg ð43Þ

and

UmðZÞ ¼ Emy11mfa1m cos bmZþ y1ma3m cos gmZg; ð44Þ

where

y11m ¼
1

f½bm=fþ n emp a1m�cos bm þ y1m½gm=fþ n emp a3m�cos gmg
;

y1m ¼
�ða1mbm þ f empÞsin bm

ða3mgm þ f empÞsin gm

;

a1m ¼ �bmfam1am2b
2
m � am1cm2 þ bm1bm2g=cm1bm2;

a3m ¼ �gmfam1am2g2m � am1cm2 þ bm1bm2g=cm1bm2:

Case 3: Solution 3 applicable

VmðZÞ ¼ Emy11mfsinh bmZþ y1m sinh gmZg ð45Þ

and

UmðZÞ ¼ Emy11mfa1m cosh bmðZÞ þ y1ma3m cosh gmZg; ð46Þ
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where

y11m ¼
1:

f½bm=fþ n emp a1m�cosh bm þ y1m½gm=fþ n emp a3m�cosh gmg
;

y1m ¼
�½a1mbm � f emp�sinh bm

½a3mgm � f emp�sinh gm

;

a1m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=cm1bm2;

a3m ¼ gm½am1am2g2m þ am1cm2 � bm1bm2�=cm1bm2:

The solution for the response of the second building block of Fig. 4 is extracted from that of the
first. The procedure to be followed is completely analogous to that described in connection with
the symmetric–symmetric mode analysis.

2.3. The symmetric–anti-symmetric mode family

Free vibration analysis of this mode family is achieved by means of the building blocks
represented in Fig. 5. Focusing on the first building block it is seen that it differs from that
employed in the previous mode study (Fig. 4), only that now terms in the solution for VmðZÞ which
are anti-symmetrically distributed about the x-axis must be deleted. All other quantities are
unchanged. This minor difference is easily implemented. Solutions for the quantities Uðx; ZÞ and
V ðx; ZÞ are again as given by Eqs. (33) and (34). It is shown that solutions for these quantities are
as follows.

For the first term in the expansions, m ¼ 1;

VmðZÞ ¼
�Emf
a sin a

cos aZ: ð47Þ

For m > 1; the following solutions apply:
Case 1: Solution 1 applicable

VmðZÞ ¼ Emy11mðcosh bmZþ y1m cos gmZÞ; ð48Þ

UmðZÞ ¼ Emy11mfa2m sinh bmZþ y1ma4m sin gmZg; ð49Þ
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Fig. 5. Schematic representation of quarter plate and building blocks utilized in analyzing modes symmetric with

respect to the x-axis and anti-symmetric with respect to the Z-axis.
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where

y11m ¼
1:

½bm=fþ n emp a2m�sinh bm � y1m½gm=f� n emp a4m�sin gm

;

y1m ¼ �
½bma2m � f emp�cosh bm

½gma4m � f emp�cos gm

;

a2m ¼ bmðam1am2b
2
m þ am1cm2 � bm1bm2Þ=cm1bm2;

a4m ¼ gmðam1am2g2m � am1cm2 þ bm1bm2Þ=cm1bm2:

Case 2: Solution 2 applicable

VmðZÞ ¼ Emy11mfcos bmZþ y1m cos gmZg ð50Þ

and

UmðZÞ ¼ Emy11mfa2m sin bmZþ y1ma4m sin gmZg; ð51Þ

where

y11m ¼
�1

f½bm=f� n emp a2m�sin bm þ y1m½gm=f� n emp a4m�sin gmg
;

y1m ¼
�ða2mbm � f empÞcos bm

ða4mgm � f empÞcos gm

;

a2m ¼ bmfam1am2b
2
m � am1cm2 þ bm1bm2g=cm1bm2;

a4m ¼ gmfam1am2g2m � am1cm2 þ bm1bm2g=cm1bm2:

Case 3: Solution 3 applicable

VmðZÞ ¼ Emy11mfcosh bmZþ y1m cosh gmZg ð52Þ

and

UmðZÞ ¼ Emy11mfa2m sinh bmðZÞ þ y1ma4m sinh gmZg; ð53Þ

where

y11m ¼
1:

f½bm=fþ n emp a2m�sinh bm þ y1m½gm=fþ n emp a4m�sinh gmg
;

y1m ¼
�½a2mbm � f emp�cosh bm

½a4mgm � f emp�cosh gm

;

a2m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=cm1bm2;

a4m ¼ gm½am1am2g2m þ am1cm2 � bm1bm2�=cm1bm2:

Finally, we examine the second building block of Fig. 5. It will be obvious that a solution for
this second building block cannot be obtained from that of the first through a transformation of
axes.
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It is found advantageous here to introduce an intermediate building block from which the
desired solution can be obtained through such a transformation. Consider the first building block
of Fig. 3, utilized in symmetric–symmetric mode analysis. Let us consider the solution for a
building block, identical to this except that the displacement V is anti-symmetrically distributed
about the x-axis. Such a solution is easily obtained. We let this modified building block act as the
intermediate one. It is seen that the solution is readily transformed to provide the desired solution
for the second building block of Fig. 5.

Solution for the displacements U and V will be as given by Eqs. (10) and (11). It is found that
the quantities VmðZÞ and UmðZÞ are as follows.

Case 1: Solution 1 applicable

VmðZÞ ¼ Emy11mðsinh bmZþ y1m sin gmZÞ; ð54Þ

UmðZÞ ¼ Emy11mfa1m cosh bmZþ y1ma3m cos gmZg; ð55Þ

where

y11m ¼
1:

½bm=f� n emp a1m�cosh bm þ y1m½gm=f� n emp a3m�cos gm

;

y1m ¼
½bma1m þ f emp�sinh bm

½gma3m � f emp�sin gm

;

a1m ¼ bmðam1am2b
2
m þ am1cm2 � bm1bm2Þ=cm1bm2;

a3m ¼ �gmðam1am2g2m � am1cm2 þ bm1bm2Þ=cm1bm2:

Case 2: Solution 2 applicable

VmðZÞ ¼ Emy11mfsin bmZþ y1m sin gmZg ð56Þ

and

UmðZÞ ¼ Emy11mfa1m cos bmZþ y1ma3m cos gmZg; ð57Þ

where

y11m ¼
1

f½bm=f� n emp a1m�cos bm þ y1m½gm=f� n emp a3m�cos gmg
;

y1m ¼
�ða1mbm � f empÞsin bm

ða3mgm � f empÞsin gm

;

a1m ¼ �bmfam1am2b
2
m � am1cm2 þ bm1bm2g=cm1bm2;

a3m ¼ �gmfam1am2g2m � am1cm2 þ bm1bm2g=cm1bm2:

Case 3: Solution 3 applicable

VmðZÞ ¼ Emy11mfsinh bmZþ y1m sinh gmZg ð58Þ

and

UmðZÞ ¼ Emy11mfa1m cosh bmZþ y1ma3m cosh gmZg; ð59Þ
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where

y11m ¼
1:

f½bm=f� n emp a1m�cosh bm þ y1m½gm=f� n emp a3m�cosh gmg
;

y1m ¼
�½a1m bm þ f emp�sinh bm

½a3mgm þ f emp�sinh gm

;

a1m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=cm1bm2;

a3m ¼ gm½am1am2g2m þ am1cm2 � bm1bm2�=cm1bm2:

The solution for the response of the second building block of Fig. 5 is obtained, of course, by
transformation of the above solution according to the rules introduced earlier. Solutions for the
response of all building blocks employed in free in-plane vibration analysis of the completely free
plate are now available.

2.4. Development of the eigenvalue matrix

Eigenvalue matrices for the mode families discussed here are generated in a manner completely
analogous to that followed in analyzing free lateral vibration modes of the same plate [4]. First,
for each mode family the associated pair of building block solutions are superimposed, one-upon-
the-other. Following this operation, driving coefficients appearing in the building block solutions
are so constrained that net normal stresses along the edges, Z ¼ 1; and x ¼ 1; are caused to vanish.
This is achieved for each edge by first expanding the contributions toward normal stress, of each
of the building blocks, in an appropriate series of K terms, where K equals the number of terms
utilized in the building block solutions. Following this operation, each of the net coefficients in the
new boundary series, of K terms, is set equal to zero. This results in the generation of a set of K

homogeneous algebraic equations involving the 2K driving coefficients. Since there are two driven
edges, there will be a total of 2K equations relating the 2K unknown coefficients. The coefficient
matrix of the combined set of equations becomes our eigenvalue matrix. A computer search is
made to find those non-zero values of the parameter, l2; which cause the determinant of the
eigenvalue matrix to vanish. These values of l2 are our sought-after eigenvalues. With any
eigenvalue established, one of the non-zero driving coefficients associated with this eigenvalue
matrix is set equal to unity. The resulting set of non-homogeneous algebraic equations is then
solved to evaluate the other driving coefficients. Following this step the mode shape associated
with the eigenvalue is plotted.

Here, we briefly describe steps involved in the generation of the eigenvalue matrix for
symmetric–symmetric modes, only. A schematic representation of the matrix, based on three-term
expansions of the building block solutions is provided in Fig. 6. Small inserts to the right of the
figure indicate the boundary condition to be addressed. It is immediately seen to be advantageous
to expand the normal stress contributions of the building blocks toward the edge, Z ¼ 1; in a sine
series as utilized in Eq. (24). Focusing now on the contributions toward the first term in the
boundary series, as represented schematically in the first row of elements in the matrix, we note
that the contribution of the first building block is already available in this series. Turning toward
the contribution of the second building block we find that each term in its solution contributes
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toward the first term in the boundary series. These contributions, associated with En; n ¼ 1; 2; 3;
are easily obtained utilizing standard known integrals and are represented by short dashed lines.
The second and third row of elements in the matrix are established in an identical manner. They
pertain, of course, to the second and third terms in the boundary series. It will be noted that the
upper left quadrant of the matrix is composed of diagonal terms only, each equal to unity.

The lower half of the matrix is generated in an identical fashion. Here, the quadrant with
diagonal terms only, will be on the right hand side. In the case of a square plate it will be found,
for symmetric–symmetric, as well as anti-symmetric–anti-symmetric, mode analysis, that elements
of the lower left quadrant of the matrix are identical to those of the upper right. This will not be
the case when conducting symmetric–anti-symmetric mode analysis. Following the above steps
the eigenvalue matrices are generated for each of the three distinct mode families.

3. Presentation of computed results

The first step to be taken in the analysis at hand is to check convergence rates and decide how
many terms to utilize in the building block solutions. It is also necessary to decide upon how many
significant digits are required in the computed eigenvalues. It was agreed to follow practices
related to lateral plate vibration and compute eigenvalues correct to four significant digits.

In Table 1 computed results are tabulated for the first symmetric–symmetric mode eigenvalue of
in-plane vibration of a square plate. These eigenvalues were computed to five significant digits for
various values of K ; the number of terms utilized in the building block solutions. The Poisson
ratio was assigned a value of 0.3 for all computations related to the present paper.

It is seen that there is a very high rate of convergence. Increasing the value of K beyond three
does not change even the fifth digit in the computed eigenvalues. As a result of convergence
behaviour observed in Table 1, as well as findings related to other tests, it was decided to adopt a
value of eleven for the parameter K ; for all computed data reported here. This is probably much
higher than that required to obtain four significant digits in the eigenvalues.
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Fig. 6. Schematic representation of the eigenvalue matrix based on 3-term building block solutions.
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Tabulated eigenvalues computed for the first four symmetric–symmetric free in-plane vibration
modes of the completely free square plate are presented in Table 2.

Where possible, the present results are compared with those of Bardell et al. [1]. It is seen that
agreement between the two sets of data is excellent. The third mode for a square plate is reported
as being an anti-symmetric–anti-symmetric mode in Ref. [1] with an eigenvalue of 1.314. It is
virtually certain that it is, in fact, a symmetric–symmetric mode as reported here.

Computed eigenvalues for the first four anti-symmetric–anti-symmetric modes of the square
plate are tabulated in Table 3. Again excellent agreement between the present results and those of
Ref. [1] is obtained.

Computed results related to a study of symmetric–anti-symmetric mode vibration of the
completely free square plate are tabulated in Table 4.

It will be appreciated that each of these computed eigenvalues represent ‘double eigenvalues’.
An additional mode shape, anti-symmetric with respect to the x-axis and symmetric with respect
to the Z-axis, is attached to each computed eigenvalue. This is why in Ref. [1] a double eigenvalue
has been uncovered with two distinct mode shapes attached to it. From a computational point of
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Table 2

First four symmetric–symmetric mode eigenvalues computed for completely free square plate

Mode l2

Present Ref. [2]

1 1.160 1.160

2 2.153 1.314

3 2.629 —

4 2.643 —

Table 3

First four anti-symmetric–anti-symmetric mode eigenvalues computed for the completely free square plate

Mode l2

Present Ref. [1]

1 1.314 1.494

2 1.494 1.726

3 1.726 —

4 2.523 —

Table 1

Computed eigenvalues vs. K for first symmetric–symmetric mode of square plate ðn ¼ 0:3Þ

K l2 K l2

3 1.1603 9 1.1603

5 1.1603 11 1.1603

7 1.1603 13 1.1603
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view an advantage of separating out the mode shape families through analyzing the quarter plate,
as is done here, lies in the fact that only distinct eigenvalues are uncovered. There will be a well-
defined crossing of the axis, at each eigenvalue, when the ‘matrix determinant vs. trial eigenvalue’
curve is plotted. Excellent agreement between the two sets of data is again observed.

Eigenvalues have also been computed for a rectangular plate with an aspect ratio, b=a; of 0.5.
Computed eigenvalues for the first four symmetric–symmetric modes of this completely free plate
are tabulated in Table 5. A corresponding set of eigenvalues are presented in Table 6 for the anti-
symmetric–anti-symmetric mode family.

Very good agreement is again obtained between the two sets of data.
Further computed eigenvalues for the same plate of aspect ratio 0.5 are tabulated in Table 7.

The associated mode shapes are either symmetric with respect to the x-axis and anti-symmetric
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Table 4

Computed first four eigenvalues for the completely free square platen

Mode l2

Present Ref. [1]

1 1.236 1.236

2 1.862 —

3 2.485 —

4 3.050 —

nModes are symmetric with respect to the x-axis and anti-symmetric with respect to the Z-axis.

Table 5

First four symmetric–symmetric mode eigenvalues for completely free rectangular plate, j ¼ 0:5

Mode l2

Present Ref. [1]

1 1.634 1.634

2 2.363 2.363

3 3.428 —

4 3.974 —

Table 6

First four anti-symmetric–anti-symmetric mode eigenvalues for completely free rectangular plate, j ¼ 0:5

Mode l2

Present Ref. [1]

1 1.480 1.480

2 2.604 2.603

3 3.074 —

4 3.298 —
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with respect to the Z-axis, as discussed earlier, or anti-symmetric with respect to the x-axis and
symmetric with respect to the Z-axis. It will be appreciated that modes of the second family are easily
analyzed by utilizing the ‘symmetric–anti-symmetric’ mode analysis technique described earlier with
the plate aspect ratio replaced by its inverse. This is what has been done in the present study.

Again, very good agreement between eigenvalues computed here and those of Ref. [1] is
encountered. The only difference of significance relates to the second eigenvalue of Table 7, i.e., the
one related to the first mode, anti-symmetric with respect to the x-axis and symmetric with respect to
the Z-axis. This eigenvalue appears not to have been uncovered in the study reported in Ref. [1]

4. Conclusions

As indicated at the beginning, the main purpose of this paper has been to introduce the
superposition method as a means for the obtaining of highly accurate analytical type solutions for
the free in-plane vibration of rectangular plates. The completely free rectangular plate has been
arbitrarily selected as the vehicle for demonstrating this capability.

Proceeding in a manner analogous to that followed in rectangular plate free lateral vibration
analysis, it has been shown that the method lends itself equally well to solution of in-plane
problems. The problem of trying to select functions to represent in-plane displacements is
eliminated. The governing differential equations are satisfied exactly and boundary conditions are
satisfied to any desired degree of accuracy. Convergence is rapid and excellent agreement is
obtained when computed eigenvalues are compared with those obtained earlier by the Rayleigh–
Ritz energy approach.

Demonstration that the superposition method works so well in the solution of in-plane
problems, as is done here, constitutes an important step forward. It will certainly be applicable to
vast families of more complicated in-plane problems such as those related to point supported
plates, plates with in-plane elastic support, and plates with local attached masses, etc. It is hoped
to extend the method to handle such problems in future work.

Appendix. Nomenclature

a; b rectangular plate edge lengths
E Youngs modulus of plate material
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Table 7

First four computed eigenvalues for free vibration modes symmetric about the x-axis and anti-symmetric about the

Z-axis (symbol S-A), or symmetric about the Z-axis and anti-symmetric about the x-axis (symbol A-S), j ¼ 0:5

Mode l2 Mode type

Present Ref. [1]

1 0.9779 0.977 S-A

2 2.392 — S-A

3 2.629 — A-S

4 2.685 — A-S
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Gxy modulus of elasticity in shear of plate material
t time
u; v plate in-plane displacements in x and y directions, respectively
U ;V dimensionless displacements U ¼ u=a; V ¼ v=a

x; y rectangular plate co-ordinates
x; Z dimensionless co-ordinates x ¼ x=a; and Z ¼ y=b

j plate aspect ratio, b=a
sx;sy; txy normal in-plane stresses in x and y directions and in-plane shear stress, respectively
sn

x;s
n
y; t

n
xy dimensionless in-plane normal and shear stresses, defined in text

o circular frequency of plate vibration
r mass density of plate material
n Poisson ratio of plate material (taken here as 0.3)
l2 dimensionless frequency of plate vibration, l2 ¼ oaOrð1 � n2Þ=E
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